Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(23): 8488-8501, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31116199

RESUMO

Three bodipy-based (BDP = 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) donor-acceptor dyads were designed and synthesized, and their ground-state and photophysical properties were systematically characterized. The electronic coupling between the BDP chromophore and an electron-donating carbazole (Carb) moiety was tuned by attachment via the meso and the beta positions on the BDP core, and through the use of various chemical linkers (phenyl and alkynyl) to afford mesoBDP-Carb, mesoBDP-phen-Carb, and betaBDP-alk-Carb. meso-Substituted dyads were found to retain ground-state absorption features of the unsubstituted BDP. However, variation of the linkage between the donor and acceptor moieties modulated the photophysical behavior of excited-state deactivation by controlling the rate of photoinduced internal charge transfer (ICT). The beta-substituted dyad dramatically tuned (red shifted) the absorption spectrum, while retaining desired features of the BDP, specifically stability and high extinction coefficients, however the ICT kinetics were accelerated compared to the meso-substituted dyads. Density functional theory (DFT) and time-dependent DFT (TDDFT) were carried out on the six potential dyads formed between BDP and Carb (attachment using the beta and meso positions for all three connections: direct, phenyl and alkynyl) to support the experimental observations. DFT and TDDFT showed molecular orbital density spread across the HOMO level only when attachment occurred through the beta position of BDP. In the meso-substituted BDP-Carb dyads, the molecular orbitals resembled those of the unsubstituted BDP. This work reveals several possible synthetic paradigms to tune photophysical properties with directed synthetic modifications and provides a mechanistic understanding of the ground- and excited- state behavior in these small-molecule donor-acceptor dyads.

2.
Chem Sci ; 7(3): 1914-1919, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899915

RESUMO

A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moieties during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials.

3.
ACS Macro Lett ; 5(4): 455-459, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35607236

RESUMO

Conductive polymers such as PEDOT:PSS hold great promise as flexible thermoelectric devices. The thermoelectric power factor of PEDOT:PSS is small relative to inorganic materials because the Seebeck coefficient is small. Ion conducting materials have previously been demonstrated to have very large Seebeck coefficients, and a major advantage of polymers over inorganics is the high room temperature ionic conductivity. Notably, PEDOT:PSS demonstrates a significant but short-term increase in Seebeck coefficient which is attributed to a large ionic Seebeck contribution. By controlling whether electrochemistry occurs at the PEDOT:PSS/electrode interface, the duration of the ionic Seebeck enhancement can be controlled, and a material can be designed with long-lived ionic Seebeck enhancements.

4.
ACS Macro Lett ; 5(1): 94-98, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35668585

RESUMO

The Seebeck effect in unipolar ion-conducting, solid-state polymers is characterized. The high Seebeck coefficient and sign in polymer ion conductors is explained via analysis of thermogalvanic multicomponent transport. A solid-state, water-processeable, flexible device based on these materials is demonstrated, showcasing the promise of polymers as thermogalvanic materials. Thermogalvanic materials based on ion-conducting polymer membranes show great promise in the harvesting of waste heat.

5.
Org Biomol Chem ; 10(17): 3455-62, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22421802

RESUMO

We report the syntheses and properties of thienopyrrole based unsymmetrical and extended heteroacenes, which are isoelectronic with heptacene (30π) and nonacene (38π), respectively. Optical and electrochemical properties of these seven and nine rings fused systems are studied. The optoelectronic properties of the syn and anti-isomers of the unsymmetrical heteroacenes are also compared. The influence of the position of the heteroatoms in the fused corona, upon the optical and electrochemical properties, is rationalized based on the contributions from the benzenoid vs. quinonoid-type structures of these molecules.

6.
Phys Chem Chem Phys ; 14(12): 4043-57, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331104

RESUMO

Research in the field of organic photovoltaics has gained considerable momentum in the last two decades owing to the need for developing low-cost and efficient energy harvesting systems. Elegant molecular architectures have been designed, synthesized and employed as active materials for photovoltaic devices thereby leading to a better molecular structure-device property relationship understanding. In this perspective, we outline new macromolecular scaffolds that have been designed within the purview of each of the three fundamental processes involving light harvesting, charge separation and charge transport.


Assuntos
Fontes de Energia Elétrica , Substâncias Macromoleculares/química , Compostos Orgânicos/química , Energia Solar , Substâncias Macromoleculares/síntese química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...